Territory Stories

Assessment of the Jabiluka Project : report of the Supervising Scientist to the World Heritage Committee



Assessment of the Jabiluka Project : report of the Supervising Scientist to the World Heritage Committee


Johnston, A.; Prendergast, J. B.; Bridgewater, Peter


E-Publications; E-Books; PublicationNT; Supervising Scientist Report; 138




Alligator Rivers Region

Table of contents

Main report--Appendix 2 of the Main Report. Submission to the Mission of the World Heritage Committee by some Australian Scientists ... --Attachment A. Johnston A. and Needham S. 1999. Protection of the environment near the Ranger uranium mine--Attachment B. Bureau of Meteorology 1999. Hydrometeorological analysis relevant to Jabiluka--Attachment C. Jones, R.N., Hennessy, K.J. and Abbs, D.J. 1999. Climate change analysis relevant to Jabiluka--Attachment D. Chiew, F and Wang, Q.J. 1999. Hydrological anaysis relevant to surface water storage at Jabiluka--Attachment E. Kalf, F. and Dudgeon, C. 1999. Analysis of long term groundwater dispersal of contaminants from proposed Jabiluka mine tailings repositories--Appendix 2 of Attachment E. Simulation of leaching on non-reactive and radionuclide contaminants from proposed Jabiluka silo banks.




Uranium mill tailings - Environmental aspects - Northern Territory - Alligator Rivers Region; Environmental impact analysis - Northern Territory - Jabiluka; Uranium mines and mining - Environmental aspects - Northern Territory - Jabiluka; Jabiluka - Environmental aspects

Publisher name

Environment Australia

Place of publication

Canberra (A.C.T.)


Supervising Scientist Report; 138


1 volume (various pagings) : illustrations, maps

File type






Copyright owner

Environment Australia



Parent handle


Citation address


Related items

https://hdl.handle.net/10070/462403; https://hdl.handle.net/10070/462400; https://hdl.handle.net/10070/462405; https://hdl.handle.net/10070/462406; https://hdl.handle.net/10070/462408; https://hdl.handle.net/10070/462409; https://hdl.handle.net/10070/462411

Page content

44 Analysis of the historical rainfall record at Oenpelli reveals an upward trend of 1.7 mm per annum in the mean annual rainfall that may be attributed to global warming and which should be added to the model predictions. The observed trend is not statistically significant but the adoption of a precautionary approach implies that the significance of this possible trend should be assessed in hydrological modelling of the Jabiluka project. However, stochastic rainfall series modelling, based upon the Oenpelli rainfall record, also exhibits a similar trend and it is concluded that there is no need to include this effect explicitly in a climate change scenario. As in previous studies, this review has found that the intensity of extreme storm events is likely to increase despite the fact that there is an overall decrease in the annual rainfall. Climate change modelling also suggests that there could be a significant increase in the magnitude of PMP events, with increases of up to 30% being suggested. Possible increases of this magnitude should be taken into account in the final design of the Jabiluka water management system by increasing the height of exclusion bunds. This is an action that can be incorporated at the detailed design stage.