Territory Stories

Assessment of the Jabiluka Project : report of the Supervising Scientist to the World Heritage Committee



Assessment of the Jabiluka Project : report of the Supervising Scientist to the World Heritage Committee


Johnston, A.; Prendergast, J. B.; Bridgewater, Peter


E-Publications; E-Books; PublicationNT; Supervising Scientist Report; 138




Alligator Rivers Region

Table of contents

Main report--Appendix 2 of the Main Report. Submission to the Mission of the World Heritage Committee by some Australian Scientists ... --Attachment A. Johnston A. and Needham S. 1999. Protection of the environment near the Ranger uranium mine--Attachment B. Bureau of Meteorology 1999. Hydrometeorological analysis relevant to Jabiluka--Attachment C. Jones, R.N., Hennessy, K.J. and Abbs, D.J. 1999. Climate change analysis relevant to Jabiluka--Attachment D. Chiew, F and Wang, Q.J. 1999. Hydrological anaysis relevant to surface water storage at Jabiluka--Attachment E. Kalf, F. and Dudgeon, C. 1999. Analysis of long term groundwater dispersal of contaminants from proposed Jabiluka mine tailings repositories--Appendix 2 of Attachment E. Simulation of leaching on non-reactive and radionuclide contaminants from proposed Jabiluka silo banks.




Uranium mill tailings - Environmental aspects - Northern Territory - Alligator Rivers Region; Environmental impact analysis - Northern Territory - Jabiluka; Uranium mines and mining - Environmental aspects - Northern Territory - Jabiluka; Jabiluka - Environmental aspects

Publisher name

Environment Australia

Place of publication

Canberra (A.C.T.)


Supervising Scientist Report; 138


1 volume (various pagings) : illustrations, maps

File type






Copyright owner

Environment Australia



Parent handle


Citation address


Related items

https://hdl.handle.net/10070/462403; https://hdl.handle.net/10070/462400; https://hdl.handle.net/10070/462405; https://hdl.handle.net/10070/462406; https://hdl.handle.net/10070/462408; https://hdl.handle.net/10070/462409; https://hdl.handle.net/10070/462411

Page content

58 Figure 5.3.1 Probability of occurrence of excess water volumes in the Jabiluka Total Containment Zone over the life of the mine for the storage capacity specified by ERA A model for assessing the radiation dose resulting from discharges of radionuclides from Jabiluka will be different from the Ranger model, principally in the radionuclide dispersion part of the model. However, the difference will be relatively small and the Ranger model has been applied here. The dose estimates arising from the excess volumes predicted by the Monte Carlo analysis of the Jabiluka water management proposed by ERA lie in the range 0 to 27 Sv. These estimates take into account that runoff from the ore stockpile only contributes 1% of the total water flowing from the TCZ to the retention pond. The probability of occurrence of these doses over the 30 year life of the mine are presented in figure 5.3.2. Figure 5.3.2 Probability versus radiation exposure of members of the public resulting from the discharge of excess water from the Jabiluka mine site for the water management system proposed by ERA Excess Volume (m3) 0 50x103 100x103 150x103 200x103 P ro ba bi lit y 10-5 10-4 10-3 10-2 Radiation Dose (Sv) 0 5 10 15 20 25 30 P ro ba bi lit y 10-5 10-4 10-3

Aboriginal and Torres Strait Islander people are advised that this website may contain the names, voices and images of people who have died, as well as other culturally sensitive content. Please be aware that some collection items may use outdated phrases or words which reflect the attitude of the creator at the time, and are now considered offensive.

We use temporary cookies on this site to provide functionality.
By continuing to use this site without changing your settings, you consent to our use of cookies.